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Large spatial-fluctuations of local magnetizations in the Ising chain are studied from
the rigorous treatment of the fluctuation spectrum and the generalized spatial correlati-
ons. It i1s shown that at low temperatures the functions relevant to the large fluctuati-
ons satisfy scaling laws near a certain characteristic value g, of the intensive variable

g relevant to the present approach.

1. Introduction
Consider a magnetic system with the Hamiltonian

N
Hy(W) =Hy©—h XS, (1D
i=1
where HN(O), N being the number of spins, is the Hamiltonian without magnetic field,
S, is a certain component of the i-site spin varibable and A is the applied scalar
magnetic field. The Gibbs free energy g (B ,h) per spin for the inverse temperature S
1s given by

_ N B
Zy (B, = Tre BEN(R) o Bg(B,h)

(1.2)
for large N provided that the interaction range is finite. The magnetization mo(h)
and the susceptibility xo(h) per spin are given as

omd (h)

mo (W) =—gy (B0, Xo(h):__aT_ =—g,(B,h), (1.3)

+ Permanent address: Department of Physics, Kagoshima Prefectural College,

Kagoshima 890, Japan



BREBREVEHAFHCE 8465 (1994

where g,(8,h) =08'g(8,h) /9K, (1=12).

The fact that the relative fluctuation strength of the total magnetization is small
(=0U/Y N)) for a large N does not imply that fluctuation of local magnetizations
are small. In fact slightly above a magnetic critical point, the strong spatial correlation
causes the development of magnetic domain structures highly correlated. This yields a
large deviation of the average magnetization over the domain from that for the whole
system. The preser'1t paper deals with such large fluctuations of local magnetizations

for the Ising chain.

2. Large fluctuations of local magnetizations

Let us take a one semi-macroscopic magnetic region composed of n spins.

The average local magnetization over the region,

N
S. 2.1)
=1 ) ’

mn~

SEES

j

approaches the ensemble average, i.e., m_,=m’(0) as n ~> . For a large but finite n,
m, is a fluctuating quantity and its probability distribution o, (m) is given by

p, m) =35 (m,—m) >, (2.2)

where <ses>>=Tresse” AN © /Zy (B,0). The extensivity of nm, suggests that the

generating function

M, (n) =< e MM >= _/;o:o o, (m) e gy, (2.3)
takes the form [1,2]

M) ~ e® @, (2.0)

for large n as long as the interaction range is finite. The expression (2.4) is consistent

with the asymptotic behavior
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pn(m) ~ yre @mn (2.5)

The fluctuation spectrum [ 1,2] o (m) is thus identical to the decay rate of the fluctua-

tion m as n increased. Evaluating (2.3) with the saddle point method yields
#(@) =—min[o m) —gm1], (2.6)
m

(6" (@)>0, 0" (m)>0) . In Ref. [3] the same approach was applied to the analysis
of large fluctuations of 2d Ising spin patterns near the critical point.

On the other hand, the generating function Mq(n) asymptotically takes the form
Mq(n) ~Zy_ (B0 Z (B,q/B)/Z\(B,0) for N = o and n — oo, since the contribution

of the interface can be neglected in comparison with the bulk contribution. One obtains

¢ ()=—Blg(B, %)—g(ﬁ,o)}, @7

or equivalently

g(B.n —g(B,0) =— ¢ (Bh. (2.8)

1
B

This argrees with the expression of the characteristic function for the whole system [1].

We define

m@) =8 @, 1@ =L =4 2.9)
dq
The magnetization m9%h) and the susceptibility x %(h) are thus obtained as mO0(h) =
m(Bh) and x%h) =B x(Bh).

Since the function ¢ (g) characterizes the fluctuation statistics of local magnetizations
without magnetic field, r.h.s of(2.8) describes the properties of the whole system under
the magnetic fields A=0 and h=kBTq.

It is possible to find and the magnetic-field dependence of the total magnetization
interms of fluctuations of local magnetizations without magnetic field. Namely by
observing m%(r) as a function of external field A, the numerical integration of (2.7)
yields ¢ (g) =8 fg/BmO (k) dr’, provided that m® (k) is a unique function of A.

Thus the observation of the relationship between the applied external field and the

_3_._
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total magnetization, enables us to determine the fluctuation spectrum relevant to the
local fluctuation-characteristic without external field. On the contrary once ¢ (g) is
observed, the free-energy difference for the corresponding magnetic field is obtained
(Eq. (2.8)) .

Turn to spatial correlations. We introduce generalized spatial power spectra of
fluctuations without magnetic field by [4]

L = lim <Lk} 6 (mp—m(qg) > , (2.10)

p—>co o0, (@

with

S;—m(g)e *jl? (2.11)
1

I {k}

Il
S |~
M=z

where r the position vector of the j-th spin site. This describes the spatial correlation
over the region whose magnetization per spin is m(q) [3]. Equation (2.10) is rewritten
as

<In{k} eq"m">

I,(k) = 1 , 2.12
(k) nlfloo M, (2.12)

since the space region where the spatial power specturm is taken is chosen to be more

larger than any correlation length. This leads to the equality
- . g
L@ =1 G L, 2.13)

where I (k;h) =lim Tre™ #H, (W I {k}/Z (B,h) is the ordinary power spectrum

n—>co
under the magnetic field A. The inverse Fourier transform of I q(k) yields the order-q
double point correlation function Cq(R), R being the relative vector between those
points.

The observation of the ordinary power spectrum I(k;h) thus immediately yields the
order-¢ power spectrum Iq(k) for ¢ = Bh describing the spatial correlation over the

region whose magnetization per site is m(q). Inversely, if Iq(k) 1s known, one gets the

ordinary power spectrum I(k;h=kBTq).
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3. Ising chain

The Hamiltonian of the Ising chain is given by

N N
f%@)=—JZJ%%H+hZF, (3.1

j= j=

(SN+1=81, Sj=il). In terms of the well-known expressin of the partition function

(5]
Zy) = Lo WY + LoV (3.2)

with

v (R =eKcosh(Bh)i«/eﬂ(sinhz(ﬁh) +eo 2K , (3.3)

(K= BJ), the free energy is obtained as g(8,h) =—kgTlogv +(h). This yields

e cosh(q) + «/e 2K sinh? (@) +e—2K

¢ (@) =log [ & 1, (3.4

e e

eKsinh(q)
m(q) = , 3.5

«/e 2K sinh? (@ +o %K
-K

h

1 (@ = e _coshig) (3.6)

[2K-

e “Ksinh? @) e 2Ky 872

2
o(m)=mlog [—"__ ] ¢ %K 4 /\/ |4 — T 3.7
1 —m?2 1—m2

-K
2 4K, —& K, -K
—log [e& /\/l—l- Mt Ty +log (e” +e )]
2
1 —m? y1-m
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Furthermore the order-q double point correlation function is obtained as
C,(R) =C,(0) (sgn (e " ¥a, 3.8)

(R=0,1,2,--- ), with the variance

—-2K
e

Cq(O) = , 3.9
e?K sinhg(q) +e %K

and the correlation length & q

eXcosh(q) +e 2Ksinh2(q) +e K

| oZK_ 2K
e e l

£,= {2og [ B (3.10)

Consider two limits, 7 — o and T — 0. For the high temperature limit, the trivial
results ¢ (¢) =log [cosh(q)] and & q — 0 are obtained, which simply implies there is
no spatial correlation among spins. For the low temperature limit, scaling laws for re

levant functions hold as follows.

A. Ferromagnetic coupling (J>>0)

By putting & =e—2K, the scaling law for thermodynamic functions is obtained as

1/ q? g 1/ 2
(@ =« C\1+ ;2—1), m(g) = ;/ 1+ %2

(3.11)
: 2
x(@=r-1 (11— %2 )32 gm) =k - 1-m2)
The correlation function satisfies
C.(0)= (1+22)‘1 £ I (3.12)
- k2’ ' Sa 2 :
U/ 1+ 2

K2

See Fig. 1.
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Fig.1. Scaling laws of thermodynamic functions (a—d) and order-g double point correlation
functions (e,f) for ferromagnetic Ising chain at low temperatures. Symbols correspond to
kpT/J=0.15(0), 0.3(+) and 0.5(A). The solid lines are the analytic results in (3.11) and
(3.12). For small T scaling relations hold.
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B. Antiferromagnetic coupling (J<<0)

In this case, there occur two types of scaling behaviors. First let ¢ be kept finite.

For a low temperature limit (K— —o0), putting k& =K we get
¢ (q) =2ksinh’( g) , m (¢) =&ksinh(g)

x (@) = kcosh(q), (3.13)

» 2 2
om) =k (= log (= +1+ ) +1-11+ =)
K K K K

The correlation function is obtained as

c, @ =1, = 2D (3.19)
2K

See Fig. 2.
The second is seen for large | g | values. Define the characteristic value ¢. via g.«=

sinh™! (e 7%) =log (e_ZK-H/ 1+e %) ~2 | K| +log 2. Consider the case near q =
| g« | . After slight calculations Eqs. (3.4—6) reduce to

$(q) = log [e°7 % +yf 1+e2 (607007 (3.15)
m(Q = o0 (3.16)
*/1+e2(£q_q*)
Eqg—q
x(@ = ¢ : (3.17)

[1t+e2eaa,01 ¥

near g= €q., (€ ==%). Accordingly the fluctuation spectrum takes the form
o (m) =qg.Iml+Imlloglml (3.18)

——;—(1+|ml)log(1+|m|)+%(l—|m|)10g a-1m).
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Fig.2. Scaling laws of thermodynamic functions (a-d) and order-g double point correlation
functions (e,f) for antiferromagnetic Ising chain at low temperatures. Symbols correspond
to kgT./J=0.15(0), 0.3(+) and 0.5(A). The solid lines are the analytic results in (3.13)
and (3.14). For small T scaling relations hold.
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See Fig. 3.
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Fig.3. Scaling laws of thermodynamic functions (a—d) and order-g double point correlation
functions (e,f) for antiferromagnetic Ising chain at low temperatures. This is valid for q
of the order g,,(g.~ 21K | +log 2). Symbols are for kgT/J=0.15(0), 0.3(+) and 0.5(A).

The solid lines are the analytic results in (3.15—3.20).
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Furthermore one finds

C,(0 = [1+e%2979)] 71, (3.19)

Eq= {2log [e®9 9« +«/1+62(5q_q*)]}_1, (3.20)
near q= € q., (Fig.3b).
4. Concluding remarks

A few decades ago van Kampen [9], Kubo-Matsuo-Kitahara [10] and Suzuki [11]
discussed the fluctuation of macrovariables using the system size expansion (the Q
expansion). Assuming that the master equation for the macrovariable @ o can be
expanded in the power series of 1/«/5,_they tried to find the asymptotic master equation
valid for a large system size. The final master equation always takes the linear Fokker-
Planck equation. This i1s a straightforward result of the central limit theorem which
1s valid only for small fluctuations from the average in the thermodynamic limit. Their
studies inform us that although the extensivity relation that the probability distribution
for a  depends onthe system size as exp [— Q¥ (a)] , (¥(a)=0(1)), holds, one can
not expand the fluctuation in the power series of 1/«/6 as long as a large deviation
from the ensemble average is concerned.

Large deviations from the Gaussian of fluctuations in the thermodynamic system are
thus small and hard to be observed. However if one observes local fluctuations of
thermodynamic system he can detect large fluctuations.

In the present paper with the above fundamental motivation we discussed the overall
(small and large) fluctuaions of local magnetizations without magnetic field. Due to
the statistical independence of sub-“thermodynamic” regions in the thermodynamic system,
the characteristic function ¢ (g) relevant to the overall statistics of local magnetizations
are determined by those of the whole system under corresponding magnetic field, (Egs.
(2.7) and (2.13)). Namely the quantities m(q), x (q) etc describing large local fluctu-
ations of magnetizations of the system without magnetic field are uniquely determined
by the averages under the magnetic field kz7q. This is due to the fact that large
fluctuations can be simply generated by applying the external field. This is the key
point for the observation of large fluctuations of the system without external field.

Based on the above fundamental remarks we discussed the overall fluctuation charact-
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eristics of 1d Ising with the well-known rigorous result for the free energy and the
spatial correlation function. In the low temperature limit the relevant statistical quan-
tities of the ferromagnetic Ising model have an anomaly at ¢g=0,i.e. at zero external
field. On the other hand the fluctuations of the antiferromagnetic Ising model in the
low temperature limit are enhanced for certain large | ¢ | values, i.e. for corresponding
large external fields. Near such “phase transition points” [12] statistical quantities

satisfy the scaling laws.
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Appendix A —Relation between the fluctuation spectrum and the entropy—
In this appendix the explicit interrelation between the fluctuation spectrum and the
entropy where there is no coexistence of several phases is derived. Let g(7,h) and
s(u,m) be respectively the Gibbs free energy and the entropy per spin, where the entropy
is chosen to be a function of the internal energy u and the magnetization m. As is

well known the steepest descent method in the thermodynamic limit yields

g(T,n) =—max [T (u’, m )—u'+hm’ ] . (A.D)
u,m
The solutions of
0 s(u,m"% 1 0 s(u,m% _ 42
ou v omd v '

yield the internal energy u(T,h) and the magnetization m0(T,h). Equation (A.1) is

rewritten as

g(T.h) =u(T,h) —hmO(T,h) — Ts(u(T,h),mO(T,h)). (A.3)
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The characteristic function and the fluctuation spectrum are respectively obtained as

- a9y_9 o 9y q 0 gq
¢ (q) B{u(T, B) Bm(T’B) Ts(u(T,B)),m(T, B)) (A4)

—u(T,0) +Ts (u(T,0),m0(T,0))} ,

0 (m(g) =qm— ¢ (@=am+ —= (E(TksT) ~g(T.0)
B

—kl; (sQu(T, 0), mO(T, 0)) —s(u(T, kyT,), mO(T, kgT.))  (A5)

+ 2, [T, kT —u(T, O .

Since

__0¢@ __ 0gTh =mU(T, kgT),  (A8)

99 Oh " h=kyT,

the insertion of the solution kgTq=A(T,m) of (A.6) into (A.5) yields the interrelation

between the entropy and the fluctuation spectrum for local magnetizations as

o(m)= 721— {su (T, 0), mU(T,0))—s@(T,A(Tm)), m) (AT
B

+ %[u(T, AT,m)) —u(T,0]} .
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