Pushout Squares in The Category of Topological Spaces

By Kentaro Ozeki

(Received September 17, 1990)

We denote by Top the category of topological spaces and continuous maps.

A following diagram 1 in Top satisfies the conditions:

- (1) $g' \circ f = f' \circ g$
- (2) For any space T and any map $h: Y \longrightarrow T$,

 $k: \mathbb{Z} \longrightarrow \mathbb{T}$ with $h \circ f = k \circ g$ there

exists a unique map $p: W \longrightarrow T$ such that

 $h = p \circ g'$ and $k = p \circ f'$.

diagram 1

Then we say that diagram 1 is a pushout square. Note that space W is defined as a quotient space $(Y \perp Z) / R$ where $Y \perp Z$ is coproduct (disjoint union) Y and Z, R the equivalence relation generated by a relation \sim by setting $f(x) \sim g(x)$ on each $x \in X$.

Also note that f, g are composites $Y \xrightarrow{i_Y} Y \coprod Z \xrightarrow{p} W$, $Z \xrightarrow{i_Z} Y \coprod Z \xrightarrow{p} W$ respectively where $i_{\mathtt{Y}}$, $i_{\mathtt{Z}}$ are natural injections and p is natural projection. Let $\mathtt{Y} \cup_{f} \mathtt{X}$

be the adjunction space by a map

 $f: A \longrightarrow Y$ where A is a subset of X.

Then diagram 2 is a pushout square where

 $i: A \longrightarrow X$ is inclusion map.

We are concerned with pushout square in Top.

1. We shall constantly use following proposition which is well known hence the proof is omitted.

diagram 2

Proposition 1.1 In the commutative diagram 3 in Top, let the left hand square is a pushout. Then the right hand square is a pushout if and only if the exterior rectangle is a pushout.

Proposition 1.2 In the following pushout square in Top,

diagram 3

- 1) if f is a injection then so is f.
- 2) if f is a surjection then so is f.
- 3) if f is an identification then so is f.
- 4) if f is a closed map then so is f. Proof. 1) Let z, z be elements of Z and suppose f'(z) = f'(z'). We shall show that z = z'.

diagram 4

鹿児島県立短期大学紀要 第41号 (1990)

Recall that f' is composites $Z \xrightarrow{i_z} Y \coprod Z \xrightarrow{p} W = (Y \coprod Z) / R$ where i_z is the natural injection and p is a natural projection, and R is equivalence relation generated by relation \sim setting by $f(x) \sim g(x)$ for each $x \in X$. Then we have $p \circ i_z(z) = p \circ i_z(z')$ and $i_z(z) = i_z(z')$. Hence we have z = z'

- 2) Let w be element of W. Then there exists a $t \in Y \coprod Z$ such that p(t) = w. If $t \in Y$ then there exists a $x \in X$ such that f(x) = t because f is a surjection. We have $f(x) = t \sim g(x)$. Then we have $f'(g(x)) = p \circ i_z(g(x)) = p(t) = w$.
- 3) Let T is a space in Top and $h: W \longrightarrow T$ be a map. Let $h \circ f$ be continuous. Then we have $h \circ f \circ g = h \circ g \circ f$ and $h \circ g$ is continuous map because f is a identification. h is continuous map, therefore W has final topology with respect to g.
- 4) Let C is a closed subset of Z. We shall show that f'(C) is a closed subset of W. To see this we need only show that $f'^{-1} \circ f'(C)$ is a closed subset of Z and $g'^{-1} \circ f'(C)$ is a closed subset of Y.

Now we have $f^{-1} \circ f'(C) = C$ and $g^{-1} \circ f'(C) = f \circ g^{-1}(C)$. Since the map f is closed, $f \circ g^{-1}(C)$ is closed subset of Y. This completes the proof.

Proposition 1.3 Let X, Y, Z be spaces and $f: A \longrightarrow Y$, $g: Y \longrightarrow Z$ in Top where A is a subspace of X.

Then we have a homeomorphism

$$\varphi: Z \cup_g \ (Y \cup_f X) \cong Z \cup_{g \circ f} X$$

Proof. In the diagram 5 left hand square and right hand one is pushout. Then exterior rectangle is pushout by proposition 1.1. It follows the universality of pushout.

$$\begin{array}{c|c}
A & f & Y & g \\
\hline
i & \overline{i} & \sqrt{\overline{i}} & \sqrt{\overline{i}} \\
X & \overline{f} & Y \cup_{f} X & \overline{g} & Z \cup_{g} (Y \cup_{f} X) \\
\hline
diagram5
\end{array}$$

Similarly we have the following.

Proposition 1.4 Let X, Y be spaces and A, B subspaces of X with $A \subseteq B$ and map $f : A \longrightarrow Y$ in Top.

Then we have homeomrphism $\varphi: (Y \cup_f B) \cup_{\bar{f}} X \cong Y \cup_f X$. Let X, Y, Z be spaces and $f: X \longrightarrow Y$,

 $g: Y \longrightarrow Z$ be maps in Top.

Then we have diagram 7 where CX is cone over X and I is interval $\begin{bmatrix} 0 & 1 \end{bmatrix}$ of real line R.

By the proposition 1.3 and 1.4 we have $Z \cup (Y \cup_f CX) \cong Z \cup_{g \circ f} CX$ and $(Y \cup_f CX) \cup_{\bar{f}} (X \times I) \cong Y \cup_f (X \times I)$.

diagram 6

OZEKI: Pushout Squares in The Category of Topological Spaces

We also have
$$(Z \cup_g)$$
 i j \bar{i} \bar{i} $X \cap_{\bar{i}} Y \cap_{\bar{i}} Z \cap_{\bar{i$

Proposition 1.5 Let X_1 , X_2 , Ybe spaces and $A_1 \subseteq X_1$, $A_2 \subseteq X_2$ be subspaces. Then there is a homeomorphism $\varphi: X_2 \cup_{i_1} (Y \cup_{f_1} X) \cong$

 i_2 : $A_2 \longrightarrow X_2$ and f_1 : $A_1 \longrightarrow Y$, $f_2: A_2 \longrightarrow Y$ respectively.

We have $\overline{i_1 \coprod i_2} \circ f = \overline{f_1 \coprod f_2} \circ k_2 \circ \overline{i_2}$.

homeomorphism $\varphi: X_2 \cup_{i_1} (Y \cup_{f_1} X) \cong Y \cup_{f_1 \sqcup f_2} (X_1 \sqcup X_2)$.

Proof. By the conditions we have three pushout squares in diagram 8 where $i_1 \sqcup i_2$, $f_1 \sqcup f_2$ are induced by inclusions $i_1: A_1 \longrightarrow X_1$, $i_2: A_2 \longrightarrow X_2$ and $f_1: A_1 \longrightarrow Y$, $X_1 \longrightarrow X_2 \cup_{f_1} X_1 \longrightarrow X_2 \cup_{f_2} (Y \cup_{f_1} X_1)$

diagram 8

Then there exists a unique map $g: Y \cup_{f_1} X_1 \longrightarrow Y \cup_{f_1 \perp \perp f_2} (X_1 \perp \!\!\! \perp X_2)$ such that $i_1 \coprod i_2 = g \circ i_1$ and

Let $h: X_1 \perp \!\!\!\perp X_2 \longrightarrow X \cup_{i_i} (Y \cup_{f_i} X_1)$ be a map induced by the maps $\overline{i_2} \circ f_1: X_1$ $\longrightarrow X_2 \cup_{i_{\pmb{\imath}}} (Y \cup_{f_1} X_1 \) \quad \text{ and } \quad \overline{\widetilde{i_1} \circ f_2} \ \ \vdots \ \ X_2 \longrightarrow X_2 \cup_{f_{\pmb{\imath}}} (Y \cup_{f_1} X \ \) \quad \text{Then we have} \quad h \circ$ $(i_1 \coprod i_2) = i_2 \circ i_1 \circ (f_1 \coprod f_2).$

Hence there exists a unique map $\psi: Y \cup_{f_1 \coprod f_2} (X_1 \coprod X_2) \longrightarrow X_2 \cup_{i_2} (Y \cup_{f_1} X_1)$ with $h = \varphi \circ \overline{f_1 \coprod f_2}$ and $\overline{i_2} \circ \overline{i_1} = \varphi \circ \overline{i_1 \coprod i_2}$. By the universality of pushout square $\psi \circ \varphi =$ $\text{identity on the space } X_2 \cup_{\textbf{\textit{i}}_1} (Y \cup_{\textbf{\textit{f}}_1} X_1 \text{) and } \varphi \circ \psi = \text{identity on the space } Y \cup_{\textbf{\textit{f}}_1 \sqcup \textbf{\textit{f}}_2} (X_1 \sqcup X_2 \text{) }.$

This completes the proof.

2. Next we shall show another application of pushout squares. We begin by proving the following proposition.

鹿児島県立短期大学紀要 第41号(1990)

Proposition 2.1 Let X and Y be spaces in Top and let $f: X \longrightarrow Y$ be a map (may be not coninuous). Let A and B be subsets of X such that $A \cup B = X$, $A-B \subset Int \ A$ and $B-A \subset Int \ B$. If $f \mid A$, $f \mid B$ are continuous, so is f where f |A, f|B are restriction of f on A, B respectively.

Proof. Let $x \in X$ and U be a neighborhood of f(x) in Y. If $x \in A \cap B$ then there exist neighborhoods M, N of x in X such that $(f \mid A)^{-1}(U) = M \cap A$ and $(f \mid B)^{-1}$ $(U) = M \cap B$. We have $M \cap N \subset (M \cap A) \cup (N \cap B) = f^{-1}(U)$.

If $x \in A - B$, then we have $A - B \subseteq Int A$ by hypothesis. Hence subset A is a neighborhoos of x in X. Since $f \mid A$ is continuous, there exists a neighborhood M of x in X such that $(f \mid A)^{-1}(U) = M \cap A$.

We have $M \cap A = f^{-1}(U) \cap A \subset f^{-1}(U)$.

If $x \in B-A$, then we may show that $f^{-1}(U)$ is a neighborhood of x in X.

Proposition 2.2 Let X be a space in Top and let A, B be subsets of X with $B \subseteq A$. If B is closed in X and $B \subseteq Int A$ A-B— Proof. Let Y be space in Top and let maps $f: A \longrightarrow Y$, $X-B \longrightarrow Y$ be in Top with $f \circ i = g \circ i$ $X \to X$ then the following diagram 10 is a pushout square.

 $g: X-B \longrightarrow Y$ be in Top with $f \circ i = g \circ j$.

We define a map $p: X \longrightarrow Y$ by $p(x) = f(x), x \in A$ diagram 10 and p(x) = g(x), $x \in X - A$. It is that $p \mid A$, $p \mid X - B$ are continuous.

We have $(X-B)-A\subset X-B$ and $A-(X-B)\subset Int\ A$. By proposition 2.1 p is continuous and uniqueness of p is easily checked. This completes the proof.

Proposition 2.3 With the notations and hypotheses of proposition 2.2, there exists a homeomorphism $h: (X-B) / (A-B) \cong X/A$.

Proof. In the diagram 11, the left hand square is pushout by proposition 2.2 and also is right hand one.

By proposition 1.1 the exterior rectangle is a pushout. The assertion follows at once from the universality of pushout square. (We denote by X/A the quotient space of X with A identified to a point and * is the one point space in Top.)

$$\begin{array}{c|c}
A - B \xrightarrow{i} A & * \\
j & j & \downarrow \\
X - B \xrightarrow{i} X \xrightarrow{p} X / A \\
diagram 11
\end{array}$$

References

- R. Brown, Elements of Modern Topology, McGraw-Hill (1968)
- J. Dugundji, Topology, Ally and Bacon (1975)
- S. MacLane, Categories for the Working Mathematician, Springer (1971)